
ARTICLE IN PRESS
Journal of Magnetism and Magnetic Materials 290–291 (2005) 442–448
0304-8853/$

doi:10.1016

�Corresp
fax: +4936

E-mail a
www.elsevier.com/locate/jmmm
Stochastic dynamic simulations of fast remagnetization
processes: recent advances and applications

Dmitri V. Berkov�, Natalia L. Gorn

INNOVENT e.V., Pruessingstr. 27B, D-07745 Jena, Germany

Available online 22 December 2004
Abstract

Numerical simulations of fast remagnetization processes using stochastic dynamics are widely used to study various

magnetic systems. In this paper, we first address several crucial methodological problems of such simulations: (i) the

influence of finite-element discretization on simulated dynamics, (ii) choice between Ito and Stratonovich stochastic

calculi by the solution of micromagnetic stochastic equations of motion and (iii) non-trivial correlation properties of the

random (thermal) field. Next, we discuss several examples to demonstrate the great potential of the Langevin dynamics

for studying fast remagnetization processes in technically relevant applications: we present numerical analysis of

equilibrium magnon spectra in patterned structures, study thermal noise effects on the magnetization dynamics of

nanoelements in pulsed fields and show some results for a remagnetization dynamics induced by a spin-polarized

current.
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1. Introduction and motivation

During the last two decades, both micromagnetic

simulations and experimental methods for studies of fast

remagnetization processes have made substantial pro-

gress. State of the art of the simulations allows one in

many cases to achieve a quantitative agreement between

simulated and experimental data and to make non-

trivial theoretical predictions. In particular, the so-called

Langevin (stochastic) dynamics formalism, which allows

one to include thermal fluctuations into the equation of
- see front matter r 2004 Elsevier B.V. All rights reserve
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motion for the magnetization, is a powerful tool to study

the behaviour of nanosized systems where finite

temperature effects play an important role due to small

system sizes.

In this review, we restrict ourselves to the analysis of

simulations performed using the standard Landau–Lif-

shitz–Gilbert equation of the magnetization motion

dMi

dt
¼ � g½Mi � ðHdet

i þ Hfl
i Þ�

�
gl

MS
½Mi � ½Mi � ðHdet

i þ Hfl
i Þ��; ð1Þ

where the deterministic effective field Hdet is augmented

by the thermal (fluctuation) field Hfl which is supposed

to take into account random fluctuations.
d.
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2. Methodological problems of dynamical simulations

2.1. Discretization effects on the remagnetization

dynamics for T ¼ 0

Most methodical problems in dynamical micromag-

netic simulations arise due to a finite-element represen-

tation of a continuous magnetic system.

The first such problem which we briefly recall here is

present already for simulations without thermal noise

(i.e., T ¼ 0 and Hfl
¼ 0 in Eq. (1)) and is due to the

following basic difference between quasistatic and

dynamic calculations. For the static case it is sufficient

to discretize the system using the mesh size somewhat

smaller than the characteristic (exchange or demagnetiz-

ing) magnetic length of the material. For dynamics it is,

generally speaking, not true. Even if the chosen mesh is

fine enough to represent all the magnetization features

for the starting state, it might happen that during the

remagnetization process magnons with wavelengths

shorter than the grid cell size play an important role.

In this case magnons with shorter and shorter wave-

lengths appear when the remagnetization goes on. As

soon as the grid is unable to support these magnons,

simulations became inadequate (see detailed analysis in

Ref. [1]). The effect is particularly important for systems

with low dissipation ðlp0:01Þ; where it poses the upper

limit on the simulation time accessible for the given grid

size.

2.2. Dynamic simulations for T40: the proper choice

of the stochastic calculus

To simulate the system remagnetization taking into

account thermal fluctuations, we have to include a

random field H
fl into the equation of motion (1). It was

shown for a system of non-interacting single-domain

particles surrounded by a thermal bath, that in order

to reproduce correctly the equilibrium thermodynamics,

it is sufficient to take Hfl with all projections having

zero mean values and d-functional correlation

properties:

hHfl
x;ii ¼ 0; hH fl

x;ið0ÞH
fl
c;jðtÞi ¼ 2DdðtÞdijdxc; (2)

D ¼
l

1þ l2
kT

gm
(3)

(i, j are the particle indices; x, c ¼ x; y; z), whereby the
noise power D can be evaluated from the fluctuation–

dissipation theorem (FDT) [2].

As it was pointed out already by Brown [2], the

inclusion of Hfl into Eq. (1) converts it into a stochastic

differential equation (SDE): the time evolution of the

magnetization includes now a random component

making the function M(t) non-differentiable (like a
Wiener process) due to correlation properties (2).

Moreover, the noise in (1) is multiplicative: the random

field components Hx
fl are multiplied by the functions to

be evaluated (Mx).

The main difficulty in solving such equations using

numerical methods is due to the well-known fact that

results may depend on the position of the integration

points inside the discrete time slices [3]. Usually the so-

called Stratonovich integration (intermediate points in

the middle of each time slice) is an adequate choice.

However, many widely used numerical methods use the

intermediate points at the beginning or the end of a time

slice (e.g., the Euler method or implicit methods often

favoured for their stability). Such methods converge to

the so-called Ito solution, which, generally speaking,

does not reproduce correctly even the equilibrium

behaviour of a physical system [3].

This problem was extensively discussed in the

literature and it was even claimed [4] that micromagnetic

simulation results obtained with methods not conver-

ging to the Stratonovich integral should be discarded.

Fortunately, we could show [5,6] that for standard

micromagnetic models with the constant moment

magnitude of each discretization cell the choice of a

stochastic calculus does not matter—Ito and Stratono-

vich solutions are equivalent. However, we point out

that the proof heavily relies on the conservation of the

moment magnitude [5]. Hence for models where this is

not the case—e.g., by simulations of the heat-assisted

magnetic recording or for models attempting to relax the

local restriction Mi ¼ Const [7]—one should pay close

attention to the choice of a numerical method used to

solve Eq. (1).
2.3. Magnetization dynamics simulations for T40:

non-trivial correlation properties of the random field

The simplest correlation properties of Hfl components

given by Eq. (2) were derived by Brown [2] for a single

magnetic moment in thermodynamic equilibrium. Hence

the question arises as to whether these properties survive

for a finite-element micromagnetic model with compli-

cated interactions between the elements. This question

includes two separate problems: (i) whether the random

noise in an interacting system remains d-correlated in

space and time and (ii) how to evaluate the noise power

D for such a system.

To clarify the first question, we start with the

statement that the presence of interactions between the

moments (cells) by itself does not automatically imply

non-trivial correlations between the random field

components on different cells, because these interactions

are already included into the deterministic field. Never-

theless, there exist at least two reasons as to why such

non-trivial correlations can exist.
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Fig. 1. Power spectrum of mx- oscillations for various

discretizations. Cusps are the manifestations of the magnon

DoS singularity (Fig. 2). The dashed rectangle represents the

spectrum expected in the limit of very fine discretization for a

low-frequency region available for the 40� 40 discretization.
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The first—physical—reason is the correlation of heat-

bath fluctuations responsible for the existence of the

random field Hfl. These correlations are expected to be

very short-ranged both in time and space [8] (correlation

time about several pico seconds and correlation length

about several nanometers), so that for standard micro-

magnetic simulations the assumption about their d-
functional behaviour is at least a good approximation.

However, when the remagnetization processes on the

time and length scales mentioned above become a

subject of interest (which is expected to happen in the

near future), it will be necessary to include correspond-

ing correlations into the simulation code.

The second source of non-trivial random field

correlations is the above-mentioned short-wave mag-

nons which cannot be supported by the discretization

grid. These magnons can still have a mean free path

much larger than the grid cell size, thus causing

substantial correlations especially of the exchange fields

on neighbouring cells. Although these excitations cannot

be included into simulations on the given grid explicitly,

it is possible to take them into account as an additional

contribution to the fluctuation field Hfl with the

corresponding correlation properties.

To calculate the correlation functions (CF) of the field

caused by these magnons, one should perform simula-

tions on a much finer grid, then cut out the field

components with the wave vectors accessible for the

initial (coarse) grid and evaluate the CF of the remaining

field [9]. It turns out that this CF oscillates with a

decaying amplitude. Its initial value, decay time and

distance strongly depend on the concrete system. The

general advice is to take these correlations into account

when the initial value of their CF is comparable with the

white noise amplitude in Eq. (2).

The second question—about the random noise

power—is more complicated. Its commonly used value

(3) is evaluated for a system of non-interacting moments

using the FDT which is valid for systems in thermo-

dynamical equilibrium. This result can be easily expanded

to a case of interacting moments using the transforma-

tion of system coordinates to its normal modes. In the

harmonic approximation (near equilibrium), such

modes can be considered as independent and the power

of random noise for all modes is the same (equipartition

theorem) and given by Eq. (3) (FDT). The backward

transformation to the initial coordinates, being—as it

was the forward transformation—an orthogonal one,

will conserve this noise power value, thus leaving the

result (3) unchanged for a system of interacting

moments also.

The situation for the non-equilibrium remagnetization

processes is unfortunately much more complicated. The

standard FDT cannot be applied to the states passed by

the system during such processes, because these states

are far from equilibrium. The problem of how to
describe correctly the influence of thermal fluctuations

during such transitions is now the subject of intensive

research.

2.4. Influence of a discretization on system properties in a

thermodynamical equilibrium

The influence of a finite-element discretization of a

continuous micromagnetic system on its average equili-

brium thermodynamic properties was studied in several

papers [10]. The corresponding influence on the power

spectrum of its excitations has not been (to our

knowledge) addressed before, so we shall discuss it here

in more detail.

To simplify our discussion, we consider a square

region of an extended thin film in an external field

perpendicular to the film plane. We neglect anisotropy

and magnetodipolar interactions and use periodic

boundary conditions.

A spectrum of magnetic excitations can be efficiently

computed using the Langevin dynamics formalism in the

following way [6]. We begin with the saturated

magnetization state (along the external field) which

minimizes the system energy for T ¼ 0: Then we

integrate the SDEs (1) until the thermodynamic

equilibrium is reached—i.e., the total energy does not

change systematically with time.

Starting from this moment we save the trajectories of

every cell magnetization during the time interval

necessary to compute the spectral power with the

desired accuracy. Finally we perform the temporal

Fourier transformation (FT) of these trajectories and

averaging of the spectra over several thermal noise

realizations.

A typical result of such simulations for a film with

lateral sizes 400� 400 nm, thickness 5 nm, exchange

constant A ¼ 1026 erg=cm and MS ¼ 1000G in an

external field Hext ¼ 100Oe is presented in Fig. 1. Here
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the power spectra of the mx-projection oscillations by

T ¼ 10K (to compare with the low-temperature analy-

tical solution given below) for two different discretiza-

tions are shown. The most striking features of these

spectra are (i) the presence of a sharp cusp in the middle

and (ii) a shift of this cusp towards higher frequencies

when the discretization is refined.

This result can be easily understood as follows. The

system energy E ¼ Eext+Eexch in a continuous formula-

tion is

E ¼ �

Z
V

HextMdV þ A

Z
V

½ðrmxÞ
2

þ ðrmyÞ
2
þ ðrmzÞ

2
�dV : ð4Þ

After the in-plane discretization of the film into

Nx�Ny cells with sizes Dx and Dy and volumes DV ;
this energy is converted into the sum over the cell indices

i,j:

E ¼ �m
XNxðyÞ

i;j¼1

mijH
ext
ij �

1

2
Jm2

X
hi;ji

ðmimjÞ; (5)

where m ¼ MSDV is the cell magnetic moment. The

exchange constant J in Eq. (5) depends on the exchange

stiffness A and the grid cell parameters as

J ¼
A

M2
SDV

1

Dx2
þ

1

Dy2

� �
: (6)

The model described by the energy (5)—which is

actually simulated in numerical micromagnetics—is a

typical simple lattice model whose thermodynamic

properties are well known. In the small-temperature

(large external field) limit, one can expand the energy (5)

over small in-plane magnetization projections mx
ij and

m
y
ij : Transition to spatial Fourier components of these

projections leads to the energy

E ¼ Eð0Þ þ
1

2
NxNy

m
g

XNxðyÞ

p;q¼1

Bpqopq; (7)

where the eigenfrequencies opq ¼ gðHext þ mJf pqÞ

depend on the wave vector indices p and q via the

sum of cos-functions as f pq ¼ 2ð2� cosð2pp=NxÞ �

cosð2pq=NzÞÞ: Factors

Bpq ¼ hjmðxÞ
pq j

2 þ jmðzÞ
pq j

2iT (8)

are given by the thermal average of the squared

amplitudes of Fourier harmonics mx
pq and my

pq: In

thermodynamic equilibrium, Bpq are inversely propor-

tional to eigenfrequencies as 
T/opq, so that the energy

contributions of all modes defined by products Bpqopq

are equal and proportional to T. Hence, the total

oscillation power for the given frequency o is inversely

proportional to this frequency and directly proportional
to the number of modes contributing to this frequency,

i.e., to the magnon density of states rðoÞ:
For 2D lattice models with nearest-neighbours

harmonic interaction (as the linearized model (5)) the

eigenfrequencies depend on the wave vectors in a cos-

like manner (see the expression for fpq after Eq. (7)) and

the density of states (Fig. 2) contains the famous van

Hove singularity in the middle. It is clearly visible in

both spectra in Fig. 1 as a cusp. The spectrum shift

towards higher frequencies when the discretization is

refined can be easily explained: the eigenfrequencies

opq ¼ gðHext þ mJf pqÞ are proportional to the exchange

constant J, which according to Eq. (6) increases as an

inverse square of a cell size when a mesh is refined.

The correct excitation spectrum for a real system,

which we attempt to simulate, also contains such a cusp

(a real system is discrete at the atomic level) but for

frequencies determined by the interatomic distances and

thus absolutely unavailable for simulations. This means

that the correct spectrum of the model (4) in the

frequency region available for micromagnetic simula-

tions is nearly flat as shown by the dashed rectangle in

Fig. 1. So in order to obtain correct results for

equilibrium system properties using such simulations,

one should either work in the frequency region where

the spectrum is still approximately flat (o5oc) or use a

coloured noise to correct the excitation spectrum of the

corresponding lattice model.
3. Application examples of Langevin dynamics

simulations

3.1. Equilibrium magnetic excitations in a nanoelement

The equilibrium magnetic excitation spectrum of

nanoelements (one of their most important character-

istics) for the given wave vector can be measured using

the high-resolution quasielastic Brilloin light scattering

(see Ref. [11] and references therein). Such experiments
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provide highly interesting information about the con-

finement and quantization of the excitation spectra in

such ultrasmall magnetic structures.

To reproduce such spectra using Langevin dynamics,

more effort than to obtain the total oscillation power

spectrum is required. Namely, after saving all the cell

moment trajectories during a simulation time deter-

mined by the desired frequency resolution, one has first

to perform spatial FT to obtain time dependencies m(q,t)

of the spatial Fourier components of the magnetization

with the required wave vector q. The subsequent

temporal FT gives then the power spectrum of these

components, which can be directly compared with

experimental data.

An example of simulation results for a rectangular Py

nanodot with lateral sizes 400� 600 nm and thickness

20 nm discretized into 40� 60� 2 cells is presented in

Fig. 3.

Several peaks with the frequencies, which are the same

for different wave vectors, are observed. This is a natural

feature of magnetic excitations in small finite structures

where the spatial confinement of an excitation leads to a

substantial width of its spectrum in q-space. A detailed

comparison with experimental data obtained on larger

nanodots will be presented elsewhere [12].

Simulations of this kind also allow one to obtain a

spatial distribution of the oscillation power for each

mode by performing temporal FT of the magnetization
Fig. 3. Oscillation power spectra of a 400� 500� 20 nm Py

rectangle for wave vectors with qx ¼ 0 and various qy (upper

part) in the in-plane field Hext ¼ 600Oe along the long side (0y-

axis) with maps (below) of the spatial distribution of the mx

oscillation power for eigenmodes marked with vertical lines on

the spectral graph.
trajectory of every cell and plotting the 2D spatial

dependencies of the spectral power for the correspond-

ing frequency. Such images are shown in Fig. 3 (lower

part). It can be seen, e.g., that the lowest mode

corresponds to the oscillations of the domain walls

between the central part and the ‘closure domains’ in the

‘flower’ remanence state.

3.2. Magnetization dynamics of a square nanodot in a

pulsed field: influence of thermal fluctuations

The most straightforward use of Langevin dynamics is

the simulation of ultrafast remagnetization processes on

a ns scale in pulsed fields. Such processes could be

recently studied by experimentally using Kerr [13] and

X-ray [14] microscopy with time and space resolutions

enabling direct comparison with micromagnetic simula-

tions.

Here, we present an example of such simulations

studying the influence of thermal fluctuations on the

magnetization dynamics of a Py square element with

lateral sizes 1� 1mm and thickness 50 nm (discretized in

100� 100� 2 cells). An external pulse field perpendicu-

lar to the layer plane with the trapezoidal time

dependence shown in Fig. 3 was applied. The initial

magnetization state was assumed to be the closed

Landau domain structure.

Time dependencies of the averaged magnetization

component perpendicular to the layer plane m? for T ¼

0 and room temperature are shown in Fig. 4. One can

see that thermal fluctuations have almost no influence

on this dependence (except for small fluctuations before

the pulse has been applied at t ¼ 0:1 ns and long after it

was decayed—not shown in Fig. 4).

However, the spatially resolved behaviour of m? is

strongly affected by thermal noise. The upper sequence

of magnetization images in Fig. 5 represents the time

evolution of the magnetization configuration for T ¼ 0:
t, nsec
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

m
pe

rp

0.000

0.010

0.005

0.020

0.015

T = 0 
T = 300 K
Field pulse (a.u.)

Fig. 4. Comparison of the time dependencies of the average m?

component during and after the field pulse shown as a dashed

line.
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Fig. 5. Spatial maps of the m? component obtained by simulations without thermal noise (upper row), for a single run at T ¼ 300K

(middle) and after averaging over 8 runs at T ¼ 300K (last row).

Fig. 6. 3D trajectories of the average element magnetization for

the square 16� 16, 32� 32 and 64� 64 nm (see text for details).
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It can be seen that domain walls of the Landau structure

oscillate with an amplitude and frequency different from

that of the domains (which causes a strong contrast

along the element diagonals) and that these walls have

their own complicate dynamics (last image).

Inclusion of thermal effects leads to the almost

complete disappearance of this contrast—only a some-

what brighter homogeneous noisy image can be seen for

times corresponding to the pulse plateau in the middle

row of Fig. 5, where results for a single run are

displayed. It was necessary to perform averaging at

least over eight independent runs (noise realizations) to

obtain an observable contrast due to domain wall

oscillations (image in the middle of the lower series).

Experiments mentioned above [13,14] are performed

using stroboscopic techniques. Hence the simulation

results may be used not only to explain experimental

data qualitatively (especially for elements with a more

complex domain structure), but also to predict the lower

boundary for the achievable image contrast for such

observations.

3.3. Remagnetization dynamics induced by a

spin-polarized current injection

After the theoretical prediction [15], it was soon

confirmed experimentally [16] that a spin-polarized

current may induce precession and even switching of

thin magnetic nanoelements. It was soon realized [17]

that simulations of this effect using the Slonczewski

torque

C ¼
aJ

MS
½M� ½M� S��; (9)

(S is the spin polarization direction of the current

through a layer) within a macrospin model [18] are not
sufficient to explain many features of experimental

results. Full-scale micromagnetic simulations should

address in the first place the following problems: (i)

starting from which element size do the domain effects

play an important role in the magnetization dynamics

and (ii) what is the role of thermal noise in different

precession regimes?
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Fig. 7. Typical magnetization patterns (mx grey-scale maps) during the steady-state precession for elements with sides b ¼ 16 nm

(a), 32 nm (b) and 64 nm (c). A non-homogeneous pattern for the 32 nm element and chaotic domains for b ¼ 64 nm are clearly visible.

D.V. Berkov, N.L. Gorn / Journal of Magnetism and Magnetic Materials 290–291 (2005) 442–448448
Here, we present corresponding preliminary results

for a steady-state precession of a 2.5 nm thick square

magnetic element with parameters equal to those given

in Ref. [19]: saturation magnetization MS ¼ 950G and

the uniaxial anisotropy field along the 0x-axis HK ¼

500Oe: Exchange constant (not specified in Ref. [19])

was set to A ¼ 1� 10�6 erg/cm. All results were

obtained for the external field Hext ¼ 1750Oe along 0x

and the spin current strength aJ ¼ 0:4MS (S also along

0x). The lateral mesh size was 2� 2 nm; results were

proved to be almost independent of the discretization.

We observed already for T ¼ 0 that by increasing the

lateral element size b a transition from a single- to

multidomain (for b � 30nm) and further to a quasi-

chaotic (at b � 60nm) behaviour occurs (Figs. 6 and 7)

(a detailed description of these transitions is presented in

Ref. [20]). The striking difference with the results

obtained in Ref. [19] may be due to a much too high

exchange constant A used there [21]. We point out that

the inclusion of the current magnetic field (not taken

into account here and in Ref. [19]) should assist the

transition to a multi-domain state, due to the inhomo-

geneity of this field.

The influence of thermal fluctuations depends on the

precession regime. For a single-domain state, for which

the element size is very small, thermal noise leads to

magnetization jumps between the half-spaces above and

below the element plane, enabling the ‘out-of-plane’

precession both with mz40 and mzo0 (compare left and

right 3D trajectory pictures for a 16� 16 nm element in

Fig. 6). For larger elements with a regular multi-domain

precession state, thermal noise strongly distorts a

‘butterfly’ trajectory present for T ¼ 0; converting it

into a slightly irregular ‘bended-8’-type (Fig. 6, picture

for 32� 32 nm). Finally, when the precession is already

chaotic, thermal noise has no qualitative influence (Fig. 6,

last row) and leads only to further broadening of the

magnetization oscillation spectrum (not shown here).
Acknowledgements

The authors thank S. Demokritov, J. Miltat and

P. Fischer for many useful discussions. This research

was partially supported by the Deutsche Forschungsge-

meinschaft (project Go 1048/1-P).
References

[1] D.V. Berkov, IEEE Trans. Magn. MAG- 38 (2002) 2489.

[2] W.F. Brown Jr., Phys. Rev. 130 (1963) 1677.

[3] S. Gardiner, Handbook on Stochastic Processes, Springer,

Berlin, 1997.

[4] J.L. Garcia-Palacios, F.J. Lazaro, Phys. Rev. B 58 (1998)

14937.

[5] D.V. Berkov, N.L. Gorn, J. Phys.: Cond. Mater 14 (2002)

L1.

[6] D.V. Berkov, et al., phys. stat. sol. (a) 189 (2002) 409.

[7] A. Aharoni, Phys. Rev. B 40 (1989) 4607.

[8] W.T. Coffey, Yu.P. Kalmykov, J.T. Waldron, The

Langevin equation, World Scientific, Singapore, 1996.

[9] D.V. Berkov, N.L. Gorn, J. Magn. Magn. Mater.

272–276P1 (2004) 687.

[10] E. Martinez, et al., IEEE Trans. Magn. 39 (2003) 2522;

G. Grinstein, R. Koch, Phys. Rev. Lett. 90 (2003) 207201;

V. Tsiantos, et al., J. Magn. Magn. Mater. 242–245 (2002)

999.

[11] J. Jorzick, et al., Phys. Rev. Lett. 88 (2002) 047204.

[12] J. Jorzick, et al., submitted for publications. Phys. Rev. B

[13] J.P. Park, et al., Phys. Rev. B 67 (2003) 020403(R).

[14] H. Stoll, et al., Appl. Phys. Lett. 84 (2004) 3328.

[15] L. Berger, Phys. Rev. B 54 (1996) 9353;

J.C. Slonczewski, J. Magn. Magn. Mater. 159 (1996) L1.

[16] J.Z. Sun, J. Magn. Magn. Mater. 202 (1999) 157;

M. Tsoi, et al., Phys. Rev. Lett. 80 (1998) 4281.

[17] J. Miltat, et al., J. Appl. Phys. 89 (2001) 6982.

[18] J.Z. Sun, Phys. Rev. B 62 (2000) 570.

[19] Z. Li, S. Zhang, Phys. Rev. B 68 (2003) 024404-1.

[20] D.V. Berkov, N.L. Gorn, cond-mat/0408615.

[21] S. Zhang, private communication.


	Stochastic dynamic simulations of fast remagnetization processes: recent advances and applications
	Introduction and motivation
	Methodological problems of dynamical simulations
	Discretization effects on the remagnetization dynamics for Tequal0
	Dynamic simulations for Tgt0: the proper choice �of the stochastic calculus
	Magnetization dynamics simulations for Tgt0: �non-trivial correlation properties of the random field
	Influence of a discretization on system properties in a thermodynamical equilibrium

	Application examples of Langevin dynamics simulations
	Equilibrium magnetic excitations in a nanoelement
	Magnetization dynamics of a square nanodot in a pulsed field: influence of thermal fluctuations
	Remagnetization dynamics induced by a �spin-polarized current injection

	Acknowledgements
	References


