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Magnetic neutron scattering on nanocomposites: Decrypting cross-section images using
micromagnetic simulations
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We have used numerical micromagnetics for the calculation of the magnetic (small-angle) neutron scattering
cross section d�M/d� of nanocomposites. In contrast to neutron experiments, in which one generally measures
only a weighted sum of the Fourier components of the magnetization, our approach allows one to study the behavior
of the individual contributions to d�M/d�. The procedure furnishes unique and fundamental information
regarding the magnetic microstructure and corresponding magnetic scattering from nanomagnets. In particular,
our simulations explain the recent observation of magnetodipolar correlations in two-phase nanocomposites and,
moreover, suggest their relevance for a wide range of magnetic materials such as nanocomposites, nanoporous
magnets, single-phase magnets with random anisotropy, and magnetic recording media.
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I. INTRODUCTION

Advanced functional magnetic materials such as Fe-based
soft and NdFeB-based hard magnetic nanocomposites are
the subject of intense fundamental and applied scientific
research (see, e.g., Refs. 1–6 and references therein). The
microstructure of these materials consists of a dispersion
of nanometer-sized crystalline magnetic particles that are
embedded in an amorphous or crystalline magnetic matrix. It
is also well known that their macroscopic magnetic properties
are controlled by microstructural defects on a local nanometer
scale. For instance, recent atomistic calculations suggest
that the coercivity of high-performance NdFeB magnets
can be explained by a distorted grain-boundary region with
reduced magnetic anisotropy.7 Therefore, in order to develop
strategies for improving their performance, the understanding
of microstructure-property relationships is crucial, and it is
important to have characterization techniques at one’s disposal
which are able to resolve the magnetic microstructure on the
nanoscale and in the bulk.

Magnetic neutron scattering, in particular magnetic small-
angle neutron scattering (SANS), is a powerful method for
the investigation of spin structures in magnetic materials on
a length scale between ∼1 nm and a few hundred nm (for
recent reviews see, e.g., Refs. 8–10). The unique feature of
SANS is the possibility to study magnetic structure in the bulk
of materials, in contrast to various microscopy techniques,
which mostly provide information about the magnetization
state at or near the sample surface. Magnetic SANS has
been employed, for instance, to study the range of magnetic
correlations in nanocrystalline 3d transition metals,11,12 the
vortex lattice of type-II superconductors,13 magnetization
dynamics in ferrofluids,14 magnetic domains in Nd2Fe14B
permanent magnets,15 nanocrystalline Tb with random para-
magnetic suceptibility,16 the spin-helix chirality in FeCoSi
single crystals,17 so-called skyrmions in MnSi,18 electric-
field-induced magnetization in multiferroic HoMnO3,19 the
spin structure of core-shell nanoparticles,20 and the im-

pact of heterogeneities on the magnetostriction of FeGa
alloys.21

The quantity of interest in a magnetic SANS experiment
is the elastic magnetic differential scattering cross section
d�M/d�, which is usually recorded on a two-dimensional
position-sensitive detector. Basic scattering theory prescribes
that d�M/d� can be expressed in terms of the Fourier
coefficient ˜M = ˜M(q) of the magnetization vector M(x), more
specifically, d�M/d� is a weighted sum of the products
of Cartesian components of ˜M. For bulk ferromagnets, ˜M
depends in a complicated manner on the momentum-transfer
vector, the applied magnetic field, and on the magnetic inter-
action parameters (exchange interaction, magnetic anisotropy,
dipolar interaction), and only for special cases, e.g., in the
approach-to-saturation regime, one can obtain approximate
closed-form expressions for ˜M.9

The fact that the experimental SANS pattern is composed of
several individual contributions often hampers the straightfor-
ward interpretation of recorded SANS data. While, in princi-
ple, some Fourier coefficients are accessible by the experiment,
e.g., through the application of a saturating magnetic field or
by exploiting the neutron-polarization degree of freedom via
so-called SANSPOL or POLARIS methods (e.g., Refs. 10,20
and 22), it is often difficult to unambiguously determine a
particular scattering contribution without “contamination” by
unwanted Fourier components. For instance, when the applied
field is not large enough to completely saturate the sample,
then the scattering along the field direction does not represent
the pure nuclear SANS, but contains also the magnetic SANS
due to the misaligned spins.23

In this paper, we report the results of full-scale three-
dimensional micromagnetic simulations of the magnetic
SANS cross section of magnetic nanocomposites. Both nu-
merical micromagnetics24 and magnetic neutron scattering are
well developed and established methods which are widely
employed for studying magnetism in solid-state physics.
As we will show in the following, it is their combination
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which provides new insights into the fundamentals of mag-
netic SANS and, thus, into the magnetic microstructure of
nanomagnets.25–28 In particular, the decisive advantage of this
approach resides in the possibility to study the contributions
of the individual Fourier components of the magnetization to
d�M/d�—rather than their combination—and relate them to
the underlying magnetic microstructure. This sheds light on the
ongoing discussion regarding the explicit momentum-transfer
dependence of d�M/d�.29 The micromagnetic computations
have been adapted to the microstructure of the Fe-based
two-phase alloy NANOPERM for which experimental data
exist.30

II. DETAILS OF THE MICROMAGNETIC ALGORITHM

In our micromagnetic model we have taken into account
the four standard contributions to the total magnetic energy:
external field, (uniaxial) magnetic anisotropy, and exchange
and dipolar interaction energies. The two-phase nanocom-
posite microstructure, consisting of magnetically “hard” Fe-
based particles embedded in a magnetically “soft” amorphous
matrix, was generated by employing an algorithm described in
Ref. 28. The simulation volume (=sample volume) is a rectan-
gular box of size 125 × 380 × 380 nm3, which was discretized
into N = 105 mesh elements. The average size of a “hard”
inclusion (nanocrystal) is D = 10 nm (as in NANOPERM30),
whereas the mesh size used to discretize the “soft” phase is
two times smaller. This discretization scheme then limits the
accessible range of momentum transfers (via the sampling
theorem) to q � qmax

∼= 1 nm−1. The volume fraction of the
nanocrystallites is xC = 40%, corresponding to about 8000
nanocrystals in the simulation volume. Materials parameters
for hard (“h”) and soft (“s”) phases are: magnetizations Mh =
1750 kA/m and Ms = 550 kA/m, anisotropy constants Kh =
4.6 × 104 J/m3 and Ks = 1.0 × 102 J/m3. As a value for the
exchange-stiffness constant, we used A = 0.5 × 10−11 J/m
for interactions both within the soft phase and between the
hard and soft phases. The equilibrium magnetization state
of the system was found, as usual, by minimizing the total
magnetic energy (for more details on our micromagnetic
methodology see Refs. 27 and 28). The computed SANS cross
sections shown below represent averages over typically 8–16
independent random configurations of the hard crystallites.

III. MAGNETIC SANS CROSS SECTION

For the most commonly used scattering geometry in a
magnetic SANS experiment, where the applied magnetic field
H ‖ ez is perpendicular to the wave vector k0 ‖ ex of the
incident neutrons, the elastic magnetic SANS cross section
d�M/d� for unpolarized neutrons can be written as9

d�M

d�
(q) = 8π3

V
b2

H [| ˜Mx |2 + | ˜My |2 cos2 θ + | ˜Mz|2 sin2 θ

− ( ˜My
˜M∗

z + ˜M∗
y

˜Mz) sin θ cos θ ]. (1)

V is the scattering volume, bH = 2.699 × 10−15 m/μB (μB:
Bohr magneton), c∗ is a quantity complex-conjugated to c, θ

denotes the angle between the scattering vector q and H, and
˜M(x,y,z)(q) are the Fourier transforms of the magnetization
components M(x,y,z)(x). Note that in the small-angle limit

FIG. 1. (Color online) Results of the micromagnetic simulations
for the Fourier coefficients of the magnetization. The images
represent projections of the respective functions into the plane of the
detector (i.e., qx = 0). The external magnetic field H ‖ ez is applied
horizontally in the plane of the detector. Values of H decrease from
top row (5 T) to bottom row (30 mT) (see insets). From left column
to right column: | ˜Mx |2, | ˜My |2, | ˜Mz|2, and CT = −( ˜My

˜M∗
z + ˜M∗

y
˜Mz).

Materials parameters of NANOPERM were used (see text). Pixels in
the corners of the images have q ∼= 0.8 nm−1. Logarithmic color scale
is used. In the first three columns from left, red color corresponds
to “high intensity” and blue color to “low intensity”; in the fourth
column, blue color corresponds to negative and orange color to
positive values of the CT.

and for this particular geometry, q ∼= q (0, sin θ, cos θ ). Since
the focus of this study is on magnetic spin-misalignment
scattering, we have ignored the nuclear SANS.

IV. RESULTS AND DISCUSSION

Figure 1 displays projections of the functions | ˜Mx |2,
| ˜My |2, | ˜Mz|2, and of the cross term CT = −( ˜My

˜M∗
z + ˜M∗

y
˜Mz),

into the plane of the two-dimensional detector at selected
external-field values. Figure 2 shows the field dependence
of the magnetic SANS cross section d�M/d� [computed
by means of Eq. (1)] and of the so-called difference cross
section, where d�M/d� at complete saturation (upper row
left image in Fig. 2) has been subtracted from the cross
section at the respective field. It can be seen in Fig. 1 that
both | ˜Mx |2 and | ˜Mz|2 are isotropic (i.e., θ independent) over
the whole field and q range. By contrast, at the smallest
q and largest fields, the Fourier coefficient | ˜My |2 reveals a
pronounced angular anisotropy with maxima roughly along
the diagonals of the detector (the so-called “clover-leaf”
anisotropy), whereas at the smaller fields, the anisotropy of
| ˜My |2 is rather of the cos2 θ -type (i.e., elongated parallel to
H). At saturation (μ0H = 5 T), both | ˜Mx |2 and | ˜My |2 are
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FIG. 2. (Color online) Applied-field dependence of the total
magnetic SANS cross section d�M/d� (upper row) and of the
so-called difference cross section (lower row). The difference cross
section at a particular field was obtained by subtracting the d�M/d�

at a saturating field of μ0H = 5 T (upper row, left), where the
normalized magnetization of the “sample” is larger than 99.99%.
Materials parameters and all other settings are as in Fig. 1.

relatively small and the main contribution to d�M/d� is due
to the term | ˜Mz|2, which originates from nanoscale jumps
of the magnetization at phase boundaries. On decreasing the
field, the transversal components increase in magnitude as
long-range spin misalignment develops. The CT oscillates
in sign between quadrants on the detector; it is positive for
0◦ < θ < 90◦, negative for 90◦ < θ < 180◦, and so on. When
the CT is multiplied by sin θ cos θ , the corresponding contri-
bution to d�M/d� becomes positive-definite for all angles θ .
Therefore, and contrary to the common assumption that the
CT averages to zero for statistically isotropic polycrystalline
microstructures, the CT appears to be of special relevance in
nanocomposite magnets.

The finding that | ˜Mx |2 and | ˜Mz|2 are isotropic and that
| ˜My |2 = | ˜My |2(θ ) provides a straightforward explanation for
the experimental observation of the clover-leaf anisotropy
in the SANS data of the alloy NANOPERM.30 Our sim-
ulation results for the difference cross section ∝ (| ˜Mx |2 +
| ˜My |2 cos2 θ + CT sin θ cos θ ) (see Fig. 2) agree qualitatively
well with the experimental data.27,28 Note also that clover-
leaf-type anisotropies in d�M/d� have been reported for a
number of other materials, including precipitates in steels,23

nanocrystalline Gd,31 and nanoporous Fe.32 The maxima in
| ˜My |2 depend on q and H , and on the magnetic parameters,
and may appear at angles θ significantly smaller than 45◦, e.g.,
at θ ∼= ±30◦ (compare Fig. 3).

As qualitatively discussed in Ref. 30, the appearance
of the clover-leaf anisotropy in d�M/d� is related to
the particular θ dependence of ˜My , which is imparted by
virtue of the magnetodipolar interaction.33 In fact, up to now,
the physical origin for the existence of the clover leaf in
the magnetic SANS cross section was merely discussed in
relation to the jump �M in the magnetization magnitude at the
interface between the Fe particle and the amorphous magnetic
matrix (�M ∼= 1200 kA/m for NANOPERM30). This jump in
magnetization gives rise to an inhomogeneous magnetodipolar
field which decorates each nanoparticle and which causes
nanoscale spin deviations within the matrix in the vicinity of
each nanoparticle. As an illustration, Fig. 4 displays the real-
space magnetization distribution around two nanoparticles.

FIG. 3. (Color online) (•) Polar plot of the Fourier coefficient
| ˜My |2(θ ) at q = (0.2 ± 0.1) nm−1 and μ0H = 0.3 T. Data have been
smoothed. Solid line: | ˜My |2 ∝ sin2 θ cos2 θ .

The symmetry of the spin structure replicates the symmetry
of the CT (compare to Fig. 1). In the presence of an applied
magnetic field the stray-field and associated magnetization
configuration around each nanoparticle “look” similar (on the
average), thus giving rise to dipolar correlations which add up
to a positive-definite CT contribution to d�M/d�.

Next, we demonstrate that magnetodipolar correlations and
the corresponding contribution of the CT to the magnetic
SANS cross section are of relevance for practically all bulk
magnetic materials which exhibit nanoscale spatial variations
in the magnetic parameters. In particular, not only variations
in the magnetization magnitude (and possibly exchange
coupling), but also variations in direction and/or magnitude
of magnetic anisotropy K (random anisotropy) may give rise
to corresponding dipolar correlations. In order to study the
impact of such variations in K (which are, by construction,
naturally included into our micromagnetic algorithm), we

FIG. 4. (Color online) Results of a micromagnetic simulation
at an applied magnetic field of μ0H = 0.3 T. Two-dimensional
real-space image of the computed spin distribution around two
nanoparticles (violet circles). Red arrows: magnetization component
M⊥ perpendicular to the applied field (H is horizontal in the plane);
thickness of arrows is proportional to the magnitude of M⊥. Blue
lines: dipolar field distribution. The nanoparticles are assumed to be
in a single-domain state.
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FIG. 5. (Color online) Fourier coefficient | ˜My |2 at μ0H = 0.3 T
and for Mh = Ms = M (i.e., �M = 0). M increases from left to
right (see insets). Kh = 4.6 × 104 J/m3, Ks = 1.0 × 102 J/m3, and
random variations in easy-axis directions from particle to particle.
All other settings are as in Fig. 1.

have computed the spin distribution for the situation that
Mh = Ms = M (i.e., �M = 0) but for different values of M .
The results for | ˜My |2 are summarized in Fig. 5. Note that | ˜Mx |2
and | ˜Mz|2 are both isotropic in this case (data not shown).

Figure 5 reveals that a clover-leaf-type pattern in | ˜My |2
develops with increasing magnetization value M , i.e., with
increasing strength of the magnetodipolar interaction. As
jumps in M at phase boundaries are excluded here as
possible sources for perturbations in the spin structure, it
is straightforward to conclude that nanoscale fluctuations in
K give rise to inhomogeneous magnetization states (with
∇ · M 	= 0), which decorate each nanoparticle and which look
similar to the structure shown in Fig. 4. This observation
strongly suggests that the origin of the clover-leaf pattern in
d�M/d� of nanomagnets is not only related to variations
in magnetization magnitude but also due to variations in
the magnitude and direction of the magnetic anisotropy
field.

V. SUMMARY AND CONCLUSIONS

Using a recently developed micromagnetic simulation
methodology we have computed the magnetic small-angle

neutron scattering (SANS) cross section d�M/d� of a two-
phase nanocomposite. This approach allows one to study the
applied-field dependence of the individual (Fourier) scatter-
ing contributions to d�M/d�, in this way supplementing
experimental SANS investigations, in which generally a
weighted sum of the magnetization Fourier coefficients is
measured. It is this particular circumstance, in conjunction
with the flexibility of our micromagnetic package in terms
of microstructure variation (particle size and distribution,
materials parameters, texture, etc.), which makes us believe
that the approach of combining full-scale three-dimensional
micromagnetic simulations with experimental magnetic-field-
dependent SANS data will provide fundamental insights into
the magnetic SANS of a wide range of magnetic materials.
As we have demonstrated for the example of the Fe-based
two-phase alloy NANOPERM, we were able to explain on
a deeper level the physical origin of the recently observed
clover-leaf angular anisotropy in the magnetic SANS cross
section. As a general result, our micromagnetic simulations
suggest that magnetodipolar correlations—and the associated
clover-leaf-shaped pattern in d�M/d�—are of importance
for all bulk nanomagnets with spatially fluctuating magnetic
parameters. This includes the technologically relevant class of
magnetic nanocomposites, nanoporous magnets, and single-
phase magnets with random anisotropy, but also magnetic
recording media.
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16G. Balaji, S. Ghosh, F. Döbrich, H. Eckerlebe, and J. Weissmüller,
Phys. Rev. Lett. 100, 227202 (2008).

17S. V. Grigoriev, D. Chernyshov, V. A. Dyadkin, V. Dmitriev, S. V.
Maleyev, E. V. Moskvin, D. Menzel, J. Schoenes, and H. Eckerlebe,
Phys. Rev. Lett. 102, 037204 (2009).
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A. Wiedenmann, C. Gómez-Polo, K. Suzuki, and A. Michels, Eur.
Phys. J. B 76, 209 (2010).

23M. Bischof, P. Staron, A. Michels, P. Granitzer, K. Rumpf,
H. Leitner, C. Scheu, and H. Clemens, Acta mater. 55, 2637
(2007).

24See, e.g., Handbook of Magnetism and Advanced Magnetic
Materials, edited by H. Kronmüller and S. Parkin, Vol. 2:
Micromagnetism (Wiley, Chichester, 2007).

25F. Y. Ogrin, S. L. Lee, M. Wismayer, T. Thomson, C. D. Dewhurst,
R. Cubitt, and S. M. Weekes, J. Appl. Phys. 99, 08G912 (2006).

26S. Saranu, A. Grob, J. Weissmüller, and U. Herr, Phys. Status Solidi
A 205, 1774 (2008).

27S. Erokhin, D. Berkov, N. Gorn, and A. Michels, IEEE Trans. Magn.
47, 3044 (2011).

28S. Erokhin, D. Berkov, N. Gorn, and A. Michels, Phys. Rev. B 85,
024410 (2012).

29C. Dufour, M. R. Fitzsimmons, J. A. Borchers, M. Laver, K. L.
Krycka, K. Dumesnil, S. M. Watson, W. C. Chen, J. Won, and
S. Singh, Phys. Rev. B 84, 064420 (2011).

30A. Michels, C. Vecchini, O. Moze, K. Suzuki, P. K. Pranzas,
J. Kohlbrecher, and J. Weissmüller, Phys. Rev. B 74, 134407
(2006).
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